Blog Detail

 Home / Blog Detail

Measurement systems analysis

The corresponding standards are very similar with a few exceptions. The allowable instrumentation errors for IEEE 112 2004 and NVLAP 150 standards are identical. However, CSA C390 2006 has some differences in terms of temperatures and readings. For example, the input power requirement for CSA C390 2006 is ±0.5% of the reading and must include the CT and PT errors, whereas those for IEEE 112 2004 and NVLAP 150 both require only ±0.5% of full scale (FS). Current sensors are usually required for testing because high current cannot be brought directly into the measuring equipment. There is a variety of sensors available to match specific applications. Clamp-on sensors can be used with power analyzers. Scope probes can also be used, but they must be used with caution to ensure the instrument is not exposed to high currents. For CTs, the feed wire can be connected through the window (CTs are typically donut shaped or oblong, with the hole or inner portion referred to as the window), or low current connections can be made to the terminals on the top of the device. Shunts are typically used for dc applications but not ac or distorted frequencies, although they can be used for synchronous motors up to a few hundred Hz. Specialized CTs are available that work well for high frequencies, more commonly found in lighting applications than in motors and drives. A new type of CT system that delivers high accuracy from dc to the kHz range is now available. It features an active-type transformer that uses a power supply conditioning unit. This type of CT system provides highly accurate measurements-approximately 0.02% to 0.05% of the reading-especially for VFDs, which can have frequencies that range from 0 Hz to the operating speed of the connected motor. Voltage transformers simply transform a voltage from one level to another. In measurement applications, step-down transformers are sometimes required to reduce the voltage delivered to the measuring instrument. However, many instruments can accommodate relatively high voltages and don't require a step-down transformer. An instrument transformer is usually combination of a CT and a voltage transformer. Instrument transformers can reduce the number of required transducers in certain measurement applications. Selection considerations, cautions When deciding which device to use, the first question is the frequency range of the parameters to be measured. Typically, dc-to-line frequency sine waves can use dc shunts, which offer high accuracy and simple installation. For ac and dc applications, the Hall effect or active type instrument transformer can be used. Hall effect technology has a lower accuracy rate, while the active type provides more precision. Various instrument transformers can operate at high frequencies of 30 Hz or more, but they can't be used for dc. The next consideration is the level of accuracy required. For an instrument transformer, it's typically specified as the "turns ratio" accuracy. Phase shift is another important factor because many transformers are designed for current measurement only and aren't compensated for phase shift. Phase shift is basically an effect of power factor for power measurement, and it will thus have an influence on the power calculation. For example, a CT with a 2-deg maximum phase shift as part of its specification would introduce an error of Cos 2 deg, or 0.06%. The user must decide if that percentage of error is acceptable for the application. A CT is a current source. According to Ohm's Law, voltage (E) equals the current (I) through the conductor multiplied by the resistance (R) of the conductor in units of ohms. Opening the secondary of a CT effectively drives the resistance to infinity. This means the internal current will saturate the coil, the voltage will approach infinity as well, and the unit will be damaged or will destroy itself. Even worse, a CT with an accidentally opened secondary could seriously injure workers. For more information visit our website allindiayellowpage.com.